Karyopherin-βs play a key role as a phase separation regulator

Author:

Yoshizawa Takuya1,Guo Lin2

Affiliation:

1. Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu-shi, Shiga 525-8577, Japan

2. Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA

Abstract

Abstract Recent studies have revealed that cells utilize liquid–liquid phase separation (LLPS) as a mechanism in assembly of membrane-less organelles, such as RNP granules. The nucleus is a well-known membrane-bound organelle surrounded by the nuclear envelope; the nuclear pore complex on the nuclear envelope likely applies LLPS in the central channel to facilitate selective biological macromolecule exchange. Karyopherin-β family proteins exclusively pass through the central channel with cargos by dissolving the phase separated hydrogel formed by the phenylalanine-glycine (FG) repeats-containing nucleoporins. Karyopherin-βs also exhibit dissolution activity for the phase separation of cargo proteins. Many cargos, including RNA-binding proteins containing intrinsically disordered regions (IDRs), undergo phase separation; however, aberrant phase separation is linked to fatal neurodegenerative diseases. Multiple weak interactions between karyopherin-βs and phase separation-prone proteins, such as FG repeats-containing nucleoporins or IDR-containing karyopherin-β cargos, are likely to be important for passing through the nuclear pore complex and maintaining the soluble state of cargo, respectively. In this review, we discuss how karyopherin-βs regulate phase separation to function.

Funder

JSPS KAKENHI

AMED Practical Research Project for Rare/Intractable Diseases

Uehara Memorial Foundation

Ralph and Marian Falk Medical Research Trust, Frick Foundation for ALS Research

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3