Genome-wide analysis of chromatin structure changes upon MyoD binding in proliferative myoblasts during the cell cycle

Author:

Wu Qianmei1,Fujii Takeru12,Harada Akihito1,Tomimatsu Kosuke1,Miyawaki-Kuwakado Atsuko1,Fujita Masatoshi2,Maehara Kazumitsu1,Ohkawa Yasuyuki1ORCID

Affiliation:

1. Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-0054, Japan

2. Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-0054, Japan

Abstract

Abstract MyoD, a myogenic differentiation protein, has been studied for its critical role in skeletal muscle differentiation. MyoD-expressing myoblasts have a potency to be differentiated with proliferation of ectopic cells. However, little is known about the effect on chromatin structure of MyoD binding in proliferative myoblasts. In this study, we evaluated the chromatin structure around MyoD-bound genome regions during the cell cycle by chromatin immunoprecipitation sequencing. Genome-wide analysis of histone modifications was performed in proliferative mouse C2C12 myoblasts during three phases (G1, S, G2/M) of the cell cycle. We found that MyoD-bound genome regions had elevated levels of active histone modifications, such as H3K4me1/2/3 and H3K27ac, compared with MyoD-unbound genome regions during the cell cycle. We also demonstrated that the elevated H3K4me2/3 modification level was maintained during the cell cycle, whereas the H3K27ac and H3K4me1 modification levels decreased to the same level as MyoD-unbound genome regions during the later phases. Immunoblot analysis revealed that MyoD abundance was high in the G1 phase then decreased in the S and G2/M phases. Our results suggest that MyoD binding formed selective epigenetic memories with H3K4me2/3 during the cell cycle in addition to myogenic gene induction via active chromatin formation coupled with transcription.

Funder

Japan Science and Technology Agency PRESTO

Japan Science and Technology Agency CREST

The Ministry of Education, Culture, Sports, Science and Technology/Japan Society

Japan Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3