Expression of TMEM59L associated with radiosensitive in glioblastoma

Author:

Gao Dezhi12,Wang Peng13,Zhi Lin13,Sun Shibin12,Qiu Xiaoguang13,Liu Yanwei13

Affiliation:

1. Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University Department of Molecular Neuropathology, , No. 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China

2. Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University Department of Gamma-Knife Center, , No. 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China

3. Beijing Tiantan Hospital, Capital Medical University Department of Radiation Oncology, , No. 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China

Abstract

Abstract Radiotherapy is one of the cornerstone of the glioblastoma treatment paradigm. However, the resistance of tumor cells to radiation results in poor survival. The mechanism of radioresistance has not been fully elucidated. This study aimed to screen the differential expressed genes related with radiosensitivity. The differentially expressed genes were screened based on RNA sequencing in 15 pairs of primary and recurrent glioblastoma that have undergone radiotherapy. Candidate genes were validated in 226 primary and 134 recurrent glioblastoma (GBM) obtained from the Chinese Glioma Genome Atlas (CGGA) database. RNA and protein expression were verified by Quantitative Real-time PCR (qPCR) and western blot in irradiated GBM cell lines. The candidate gene was investigated to explore the relationship between mRNA levels and clinical characteristics in the CGGA and The Cancer Genome Atlas dataset. Kaplan–Meier survival analysis and Cox regression analysis were used for survival analysis. Gene ontology and KEGG pathway analysis were used for bioinformatics analysis. Four genes (TMEM59L, Gelsolin, ZBTB7A and ATX) were screened. TMEM59L expression was significantly elevated in recurrent glioblastoma and lower in normal brain tissue. We selected TMEM59L as the target gene for further study. The increasing of TMEM59L expression induced by radiation was confirmed by mRNA and western blot in irradiated GBM cell. Further investigation revealed that high expression of TMEM59L was enriched in IDH mutant and MGMT methylated gliomas and associated with a better prognosis. Gene ontology and KEGG pathway analysis revealed that TMEM59L was closely related to the DNA damage repair and oxidative stress respond process. We speculated that the high expression of TMEM59L might enhance radiotherapy sensitivity by increasing ROS-induced DNA damage and inhibiting DNA damage repair process.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3