Numerical modelling analysis of multi-source semi-airborne TEM systems using a TFEM

Author:

Li He1,Qi Zhipeng1,Li Xiu1,Zhang Yingying1

Affiliation:

1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China

Abstract

Abstract Traditional transient electromagnetic methods use single sources for excitation and extract the characteristics of underground media by improving interpretation technology. This study focused the improvements of transient electromagnetic interpretation using complex source technology. A time-domain vector finite element method (TFEM) was applied on three-dimensional forward modelling of semi-airborne transient electromagnetic (TEM) with multiple electrical sources, and it analysed the characteristics of fields with multiple sources. The study used a model of an isolated anomalous body in a homogeneous medium as an example. The effects of different combinations of excitation sources on the distributions of the magnetic field characteristics were analysed. Numerical results showed that the magnetic field components in a specific area could be strengthened by changing the layout of the sources, which was significant for future field data collections. By comparing the transient electromagnetic fields of the vertical array dipole sources with that of the loop source, the anomaly transient electromagnetic field of multi-source was more obvious than the field with a single source. Taking a complex orebody model as an example, a cross-electric source was used to calculate the magnetic field components of the semi-airborne TEM method. The resistivity distribution characteristics of the underground medium were obtained using an apparent resistivity interpretation method of the vertical magnetic field, which fully demonstrated that a multi-source transient electromagnetic system had the ability to determine abundant resistivity information of a complex medium.

Funder

National Natural Science Foundation Program

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3