MantaID: a machine learning–based tool to automate the identification of biological database IDs

Author:

Zeng Zhengpeng1,Hu Jiamin1,Cao Miyuan1,Li Bingbing1,Wang Xiting1,Yu Feng23,Mao Longfei1

Affiliation:

1. Department of Pharmacy, College of Biology, Hunan University , No. 27, Tianma Road, Changsha 410082, P.R. China

2. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University , No. 27, Tianma Road, Changsha 410082, P.R. China

3. State Key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences , No. 27, Tianma Road, Changsha 410125, P.R. China

Abstract

Abstract The number of biological databases is growing rapidly, but different databases use different identifiers (IDs) to refer to the same biological entity. The inconsistency in IDs impedes the integration of various types of biological data. To resolve the problem, we developed MantaID, a data-driven, machine learning–based approach that automates identifying IDs on a large scale. The MantaID model’s prediction accuracy was proven to be 99%, and it correctly and effectively predicted 100,000 ID entries within 2 min. MantaID supports the discovery and exploitation of ID from large quantities of databases (e.g. up to 542 biological databases). An easy-to-use freely available open-source software R package, a user-friendly web application and application programming interfaces were also developed for MantaID to improve applicability. To our knowledge, MantaID is the first tool that enables an automatic, quick, accurate and comprehensive identification of large quantities of IDs and can therefore be used as a starting point to facilitate the complex assimilation and aggregation of biological data across diverse databases.

Funder

Hunan University

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3