ThermoPCD: a database of molecular dynamics trajectories of antibody–antigen complexes at physiologic and fever-range temperatures

Author:

Singh Puneet K1,Stan Razvan C1ORCID

Affiliation:

1. Department of Basic Medical Science, Chonnam National University , Hwasun 58128, Republic of Korea

Abstract

Abstract Progression of various cancers and autoimmune diseases is associated with changes in systemic or local tissue temperatures, which may impact current therapies. The role of fever and acute inflammation-range temperatures on the stability and activity of antibodies relevant for cancers and autoimmunity is unknown. To produce molecular dynamics (MD) trajectories of immune complexes at relevant temperatures, we used the Research Collaboratory for Structural Bioinformatics (RCSB) database to identify 50 antibody:antigen complexes of interest, in addition to single antibodies and antigens, and deployed Groningen Machine for Chemical Simulations (GROMACS) to prepare and run the structures at different temperatures for 100–500 ns, in single or multiple random seeds. MD trajectories are freely available. Processed data include Protein Data Bank outputs for all files obtained every 50 ns, and free binding energy calculations for some of the immune complexes. Protocols for using the data are also available. Individual datasets contain unique DOIs. We created a web interface, ThermoPCD, as a platform to explore the data. The outputs of ThermoPCD allow the users to relate thermally-dependent changes in epitopes:paratopes interfaces to their free binding energies, or against own experimentally derived binding affinities. ThermoPCD is a free to use database of immune complexes’ trajectories at different temperatures that does not require registration and allows for all the data to be available for download. Database URL: https://sites.google.com/view/thermopcd/home

Funder

National Research Foundation of Korea

Oracle

Publisher

Oxford University Press (OUP)

Reference37 articles.

1. Microenvironmental influences on T cell immunity in cancer and inflammation;Heintzman;Cell Mol. Immunol.,2022

2. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management;Kroschinsky;Crit. Care,2017

3. Naproxen for the treatment of neoplastic fever: A PRISMA-compliant systematic review and meta-analysis;Zhang;Medicine,2019

4. Optimal management of neutropenic fever in patients with cancer;Zimmer;J. Oncol. Pract.,2019

5. Impact of acetaminophen on the efficacy of immunotherapy in cancer patients;Bessede;Ann. Oncol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3