Integrated ACMG-approved genes and ICD codes for the translational research and precision medicine

Author:

Wable Raghunandan1,Nair Achuth Suresh1,Pappu Anirudh1,Pierre-Louis Widnie1,Abdelhalim Habiba1,Patel Khushbu1,Mendhe Dinesh1,Bolla Shreyas1,Mittal Sahil1,Ahmed Zeeshan12ORCID

Affiliation:

1. Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University , 112 Paterson St, New Brunswick, NJ 08901, USA

2. Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences , 125 Paterson St, New Brunswick, NJ 08901, USA

Abstract

Abstract A timely understanding of the biological secrets of complex diseases will ultimately benefit millions of individuals by reducing the high risks for mortality and improving the quality of life with personalized diagnoses and treatments. Due to the advancements in sequencing technologies and reduced cost, genomics data are developing at an unmatched pace and levels to foster translational research and precision medicine. Over 10 million genomics datasets have been produced and publicly shared in 2022. Diverse and high-volume genomics and clinical data have the potential to broaden the scope of biological discoveries and insights by extracting, analyzing and interpreting the hidden information. However, the current and still unresolved challenges include the integration of genomic profiles of the patients with their medical records. The definition of disease in genomics medicine is simplified, whereas in the clinical world, diseases are classified, identified and adopted with their International Classification of Diseases (ICD) codes, which are maintained by the World Health Organization. Several biological databases have been produced, which include information about human genes and related diseases. However, still, there is no database that exists, which can precisely link clinical codes with relevant genes and variants to support genomic and clinical data integration for clinical and translational medicine. In this project, we focused on the development of an annotated gene–disease–code database, which is accessible through an online, cross-platform and user-friendly application, i.e. PROMIS-APP-SUITE-Gene-Disease-Code. However, our scope is limited to the integration of ICD-9 and ICD-10 codes with the list of genes approved by the American College of Medical Genetics and Genomics. The results include over 17 000 diseases and 4000 ICD codes, and over 11 000 gene–disease–code combinations. Database URL https://promis.rutgers.edu/pas/

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3