MetamORF: a repository of unique short open reading frames identified by both experimental and computational approaches for gene and metagene analyses

Author:

Choteau Sebastien A12ORCID,Wagner Audrey1,Pierre Philippe234,Spinelli Lionel12,Brun Christine15ORCID

Affiliation:

1. Aix-Marseille University, INSERM, TAGC, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France

2. Aix-Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France

3. Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro 3810-193, Portugal

4. Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

5. CNRS, 31 Chemin Joseph Aiguier, Marseille 13009, France

Abstract

Abstract The development of high-throughput technologies revealed the existence of non-canonical short open reading frames (sORFs) on most eukaryotic ribonucleic acids. They are ubiquitous genetic elements conserved across species and suspected to be involved in numerous cellular processes. MetamORF (https://metamorf.hb.univ-amu.fr/) aims to provide a repository of unique sORFs identified in the human and mouse genomes with both experimental and computational approaches. By gathering publicly available sORF data, normalizing them and summarizing redundant information, we were able to identify a total of 1 162 675 unique sORFs. Despite the usual characterization of ORFs as short, upstream or downstream, there is currently no clear consensus regarding the definition of these categories. Thus, the data have been reprocessed using a normalized nomenclature. MetamORF enables new analyses at locus, gene, transcript and ORF levels, which should offer the possibility to address new questions regarding sORF functions in the future. The repository is available through an user-friendly web interface, allowing easy browsing, visualization, filtering over multiple criteria and export possibilities. sORFs can be searched starting from a gene, a transcript and an ORF ID, looking in a genome area or browsing the whole repository for a species. The database content has also been made available through track hubs at UCSC Genome Browser. Finally, we demonstrated an enrichment of genes harboring upstream ORFs among genes expressed in response to reticular stress. Database URL  https://metamorf.hb.univ-amu.fr/

Funder

the Investissements Avenir French Government program managed by the French National Research Agency

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3