PHILM2Web: A high-throughput database of macromolecular host–pathogen interactions on the Web

Author:

Le Tuan-Dung1,Nguyen Phuong D2,Korkin Dmitry3,Thieu Thanh4ORCID

Affiliation:

1. Department of Computer Science, Oklahoma State University , Stillwater, OK, USA

2. Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, OK, USA

3. Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute , Worcester, MA, USA

4. Machine Learning Department, Moffitt Cancer Center and Research Institute , Tampa, FL, USA

Abstract

Abstract During infection, the pathogen’s entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host–pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein–protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available. Here, we introduce a high-throughput literature-mining platform for extracting HPI data that includes the most comprehensive to date collection of HPIs obtained from the PubMed abstracts. Our HPI data portal, PHILM2Web (Pathogen–Host Interactions by Literature Mining on the Web), integrates an automatically generated database of interactions extracted by PHILM, our high-precision HPI literature-mining algorithm. Currently, the database contains 23 581 generic HPIs between 157 host and 403 pathogen organisms from 11 609 abstracts. The interactions were obtained from processing 608 972 PubMed abstracts, each containing mentions of at least one host and one pathogen organisms. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also utilized PHILM to process 25 796 PubMed abstracts obtained by the same query as the COVID-19 Open Research Dataset. This COVID-19 processing batch resulted in 257 HPIs between 19 host and 31 pathogen organisms from 167 abstracts. The access to the entire HPI dataset is available via a searchable PHILM2Web interface; scientists can also download the entire database in bulk for offline processing. Database URL: http://philm2web.live

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

Reference84 articles.

1. Identifying protein-protein interaction using tree lstm and structured attention;Ahmed,2019

2. HIV-1, human interaction database: current status and new features;Ako-Adjei;Nucleic Acids Res.,2014

3. HPIDB 2.0: a curated database for host–pathogen interactions;Ammari;Database,2016

4. Population biology of infectious diseases: Part I;Anderson;Nature,1979

5. Identification of infectious disease-associated host genes using machine learning techniques;Barman;BMC Bioinform.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3