PMBC: a manually curated database for prognostic markers of breast cancer

Author:

Liu Jiabei1,Yu Yiyi1,Li Mingyue1,Wu Yixuan1,Chen Weijun1,Liu Guanru1,Liu Lingxian1,Lin Jiechun1,Peng Chujun1,Sun Weijun12,Wu Xiaoli3,Chen Xin1

Affiliation:

1. School of Automation, Guangdong University of Technology , 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China

2. Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology , 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China

3. School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology , 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China

Abstract

Abstract Breast cancer is notorious for its high mortality and heterogeneity, resulting in different therapeutic responses. Classical biomarkers have been identified and successfully commercially applied to predict the outcome of breast cancer patients. Accumulating biomarkers, including non-coding RNAs, have been reported as prognostic markers for breast cancer with the development of sequencing techniques. However, there are currently no databases dedicated to the curation and characterization of prognostic markers for breast cancer. Therefore, we constructed a curated database for prognostic markers of breast cancer (PMBC). PMBC consists of 1070 markers covering mRNAs, lncRNAs, miRNAs and circRNAs. These markers are enriched in various cancer- and epithelial-related functions including mitogen-activated protein kinases signaling. We mapped the prognostic markers into the ceRNA network from starBase. The lncRNA NEAT1 competes with 11 RNAs, including lncRNAs and mRNAs. The majority of the ceRNAs in ABAT belong to pseudogenes. The topology analysis of the ceRNA network reveals that known prognostic RNAs have higher closeness than random. Among all the biomarkers, prognostic lncRNAs have a higher degree, while prognostic mRNAs have significantly higher closeness than random RNAs. These results indicate that the lncRNAs play important roles in maintaining the interactions between lncRNAs and their ceRNAs, which might be used as a characteristic to prioritize prognostic lncRNAs based on the ceRNA network. PMBC renders a user-friendly interface and provides detailed information about individual prognostic markers, which will facilitate the precision treatment of breast cancer. PMBC is available at the following URL: http://www.pmbreastcancer.com/.

Funder

Basic Research Project (Dengfeng hospital) jointly Funded by Guangzhou City and University

National Natural Science Foundation of China

Science and Technology Projects in Guangzhou

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3