Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences

Author:

Deng Cecilia H1ORCID,Naithani Sushma2ORCID,Kumari Sunita3ORCID,Cobo-Simón Irene45,Quezada-Rodríguez Elsa H67,Skrabisova Maria8,Gladman Nick39,Correll Melanie J10,Sikiru Akeem Babatunde11ORCID,Afuwape Olusola O12,Marrano Annarita13,Rebollo Ines14,Zhang Wentao15,Jung Sook16ORCID

Affiliation:

1. Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited , 120 Mt Albert Road, Auckland 1025, New Zealand

2. Department of Botany and Plant Pathology, Oregon State University , Corvallis, OR 97331, USA

3. Cold Spring Harbor Laboratory , 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA

4. Department of Ecology and Evolutionary Biology, University of Connecticut , Storrs, CT, USA

5. Institute of Forest Science (ICIFOR-INIA, CSIC) , Madrid, Spain

6. Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco , Ciudad de México, México

7. Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México , Ciudad de México, México

8. Department of Biochemistry, Faculty of Science, Palacky University , Olomouc, Czech Republic

9. U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University , Ithaca, NY 14853, USA

10. Agricultural and Biological Engineering Department, University of Florida , 1741 Museum Rd, Gainesville, FL 32611, USA

11. Federal University of Agriculture Zuru , PMB 28, Zuru, Kebbi 872101, Nigeria

12. University of Lagos , Nigeria

13. Phoenix Bioinformatics , 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA

14. Universidad de la República , Uruguay

15. National Research Council Canada , 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada

16. Department of Horticulture, Washington State University , 303c Plant Sciences Building, Pullman, WA 99164-6414, USA

Abstract

Abstract Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021–22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.

Funder

National Science Foundation

Research Coordination Network

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

Reference231 articles.

1. Integrating multi-omics data for crop improvement;Scossa;J. Plant Physiol.,2021

2. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives;Yang;Mol. Plant,2020

3. Big Data, Little Data, No Data

4. Three gaps in opening science;Mosconi;Comput. Support Coop. Work (CSCW),2019

5. Who, what, when, where, and why? Quantifying and understanding biomedical data reuse;Federer,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3