Curation of over 10 000 transcriptomic studies to enable data reuse

Author:

Lim Nathaniel12ORCID,Tesar Stepan2,Belmadani Manuel2,Poirier-Morency Guillaume2ORCID,Mancarci Burak Ogan23,Sicherman Jordan23,Jacobson Matthew2,Leong Justin2,Tan Patrick2,Pavlidis Paul24ORCID

Affiliation:

1. Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada

2. Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada

3. Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada

4. Department of Psychiatry, Faculty of Medicine, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T2A1, Canada

Abstract

Abstract Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe–gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma’s holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html

Funder

National Institute of Mental Health

Natural Sciences and Engineering Research Council of Canada

University of British Columbia Four–Year Doctoral Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3