AFTM: a database of transmembrane regions in the human proteome predicted by AlphaFold

Author:

Pei Jimin123ORCID,Cong Qian123

Affiliation:

1. Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center , 6001 Forest Park Rd, Dallas, TX 75390, USA

2. Department of Biophysics, University of Texas Southwestern Medical Center , 6001 Forest Park Rd, Dallas, TX 75390, USA

3. Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center , 6001 Forest Park Rd., Dallas, TX 75390, USA

Abstract

AbstractTransmembrane proteins (TMPs), with diverse cellular functions, are difficult targets for structural determination. Predictions of TMPs and the locations of transmembrane segments using computational methods could be unreliable due to the potential for false positives and false negatives and show inconsistencies across different programs. Recent advances in protein structure prediction methods have made it possible to identify TMPs and their membrane-spanning regions using high-quality structural models. We developed the AlphaFold Transmembrane proteins (AFTM) database of candidate human TMPs by identifying transmembrane regions in AlphaFold structural models of human proteins and their domains using the positioning of proteins in membranes, version 3 program, followed by automatic corrections inspired by manual analysis of the results. We compared our results to annotations from the UniProt database and the Human Transmembrane Proteome (HTP) database. While AFTM did not identify transmembrane regions in some single-pass TMPs, it identified more transmembrane regions for multipass TMPs than UniProt and HTP. AFTM also showed more consistent results with experimental structures, as benchmarked against the Protein Data Bank Transmembrane proteins (PDBTM) database. In addition, some proteins previously annotated as TMPs were suggested to be non-TMPs by AFTM. We report the results of AFTM together with those of UniProt, HTP, TmAlphaFold, PDBTM and Membranome in the online AFTM database compiled as a comprehensive resource of candidate human TMPs with structural models.Database URL http://conglab.swmed.edu/AFTM

Funder

Welch Foundation

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALPHAFOLD: REVOLUTIONIZING PROTEIN FOLDING THROUGH DEEP LEARNING AND NEURAL NETWORKS;İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3