Field-based recombinase polymerase amplification and lab-based qPCR assays for detection of Helicoverpa armigera

Author:

Rich Mitchell1ORCID,Noh Enoch1,Wang Hehe1,Greene Jeremy1ORCID,Gilligan Todd2ORCID,Reay-Jones Francis P F3ORCID,Turnbull Matt4ORCID,Zink Frida2

Affiliation:

1. Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University , Blackville, SC , USA

2. USDA-APHIS-PPQ-Science & Technology, Identification Technology Program , Fort Collins, CO , USA

3. Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University , Florence, SC , USA

4. Department of Biological Sciences, Clemson University , Clemson, SC , USA

Abstract

Abstract Helicoverpa armigera (Hübner) is a major crop pest native to Europe, Asia, Australia, and Africa which has recently invaded South America and has caused billions of dollars in agricultural losses. Because of challenges in differentiating between H. armigera and Helicoverpa zea (Boddie), a closely related species native to North and South America, genetic tests have previously been developed to detect H. armigera DNA in pooled samples of moth legs. In this study, a field-based recombinase polymerase amplification (RPA) assay using a lateral flow strip and a qPCR melt curve assay were developed for specific detection of H. armigera DNA in pooled moth samples. In addition, a crude DNA extraction protocol for whole moths was developed to allow rapid preparation of DNA samples. The RPA field test was able to detect ≥ 10 pg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of 999 H. zea equivalents. The qPCR assay was able to detect ≥ 100 fg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of up to 99,999 H. zea equivalents. Both RPA and qPCR assays detected H. armigera in the crude DNA extracted in the field from a pool of one H. armigera moth and 999 H. zea moths. These newly developed molecular assays to detect H. armigera will contribute to large-scale surveillance programs of H. armigera.

Funder

U.S. Department of Agriculture

NIFA

Clemson University

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3