Boundary conditions for constraint systems in variational principle

Author:

Izumi Keisuke12,Shimada Keigo3,Tomonari Kyosuke3,Yamaguchi Masahide34

Affiliation:

1. Kobayashi-Maskawa Institute, Nagoya University , Nagoya 464-8602 , Japan

2. Department of Mathematics, Nagoya University , Nagoya 464-8602 , Japan

3. Department of Physics, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 , Japan

4. Cosmology, Gravity and Astroparticle Physics Group, Center for Theoretical Physics of the Universe, Institute for Basic Science , Daejeon 34126 , Korea

Abstract

Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.

Funder

SCOAP

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3