Improved pion mean fields and masses of singly heavy baryons

Author:

Kim June-Young12,Kim Hyun-Chul23

Affiliation:

1. Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany

2. Department of Physics, Inha University, Incheon 22212, Republic of Korea

3. School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Republic of Korea

Abstract

Abstract A singly heavy baryon can be viewed as $N_c-1$ ($N_c$ being the number of colors) light valence quarks bound by the pion mean fields that are created by the presence of the $N_c-1$ valence quarks self-consistently, while the heavy quark inside a singly heavy baryon is regarded as a static color source. We investigate how the pion mean fields are created by the presence of $N_c$, $N_c-1$, and $N_c-2$ light valence quarks, which correspond to the systems of light baryons, singly heavy baryons, and doubly heavy baryons. As the number of colors decreases from $N_c$ to $N_c-1$, the pion mean fields undergo changes. As a result, the valence quark contributions to the moments of inertia of the soliton become larger than for $N_c$ valence quarks, whereas the sea quark contributions decrease systematically. On the other hand, the presence of the $N_c-2$ valence quarks is not enough to produce the strong pion mean fields, which leads to the classical soliton not being formed. This indicates that the pion mean-field approach is not suitable to describe doubly heavy baryons. We show that the mass spectra of the singly heavy baryons are better described by the improved pion mean fields, compared with the previous work in which the pion mean fields are assumed to be intact with $N_c$ varied.

Funder

SCOAP

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3