Higher-dimensional polytopal universe in Regge calculus

Author:

Tsuda Ren1,Fujiwara Takanori2

Affiliation:

1. Student Support Center, Chiba Institute of Technology, Narashino 275-0023, Japan

2. Department of Physics, Ibaraki University, Mito 310-8512, Japan

Abstract

Abstract The higher-dimensional closed Friedmann–Lemaître–Robertson–Walker (FLRW) universe with a positive cosmological constant is investigated by Regge calculus. A Cauchy surface of the discretized FLRW universe is replaced by a regular polytope in accordance with the Collins–Williams formalism. Polytopes in arbitrary dimensions can be systematically dealt with by a set of five integers integrating the Schläfli symbol of the polytope. The Regge action in the continuum time limit is given. It possesses reparameterization invariance of the time variable. The variational principle for edge lengths and struts yields a Hamiltonian constraint and an evolution equation. They describe an oscillating universe in dimensions larger than three. To go beyond the approximation by regular polytopes, we propose pseudo-regular polytopes with fractional Schläfli symbols as a substitute for geodesic domes in higher dimensions. We examine the pseudo-regular polytope model as an effective theory of Regge calculus for the geodesic domes. In the infinite frequency limit, the pseudo-regular polytope model reduces to the continuum FLRW universe.

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3