An approach to constrain models of accreting neutron stars with the use of an equation of state

Author:

Dohi Akira1,Hashimoto Masa-aki1,Yamada Rio1,Matsuo Yasuhide2,Fujimoto Masayuki Y3

Affiliation:

1. Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

2. Nippo-cho, Minatokouhoku-ku, Yokohama, Kanagawa 223-0057, Japan

3. Department of Physics, Hokkaido University, Sapporo 060-8810, Japan

Abstract

Abstract We investigate X-ray bursts during the thermal evolution of an accreting neutron star that corresponds to the X-ray burster GS 1826$-$24. Physical quantities of the neutron star are included using an equation of state below and above the nuclear matter density. We adopt an equation of state and construct an approximate network that saves computational time and calculates nuclear energy generation rates accompanying the abundance evolutions. The mass and radius of the neutron star are found by solving the stellar evolution equations from the center to the surface; this involves necessary information such as the nuclear energy generation in accreting layers, heating from the crust, and neutrino emissions inside the stellar core. We reproduce the light curve and recurrence time of the X-ray burst from GS 1826$-$24 within the standard deviation of 1$\sigma$ for the assumed accretion rate, metallicity, and equation of state. It is concluded that the observed recurrence time is consistent with the theoretical model with metallicity of the initial CNO elements $Z_{\rm CNO} = 0.01$. We suggest that the nuclear reaction rates responsible for the $rp$-process should be examined in detail, because the rates may change the shape of the light curve and our conclusion.

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3