Large enhancement of conductivity in a strongly layered type-II superconductor with an artificial pinning array

Author:

Tinh Bui Duc1

Affiliation:

1. Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

Abstract We use the time-dependent Ginzburg–Landau equation to describe a type-II superconductor in a magnetic field in the presence of both strong thermal fluctuations and an artificial pinning array. Thermal fluctuations are represented by the Langevin white noise. The layered structure of the superconductor is taken into accounted with the Lawrence–Doniach model. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in the time-dependent Ginzburg–Landau equation. In the case of the $\delta $-function model for the pinning centers and the matching field, analytic expressions for the fluctuation electrical and thermoelectric conductivity are obtained. It is found that the fluctuations in electrical and thermoelectric conductivities increase with increasing pinning strength, and when the pinning strength comes near a critical value, the fluctuation conductivity is greatly enhanced. Our result shows that if a pinning array is added to a mixed state superconductor, the original properties of the superconductor are recovered. Physically, in the presence of thermal fluctuations, when the energy scale of the vortex lattice shear fluctuations becomes comparable to the pinning energy scale there is a large enhancement of the fluctuation conductivity in the presence of pinning.

Funder

Vietnam National Foundation for Science and Technology Development

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3