Gravitational Waves from First-Order Phase Transition in an Electroweakly Interacting Vector Dark Matter Model

Author:

Abe Tomohiro1ORCID,Hashino Katsuya12ORCID

Affiliation:

1. Department of Physics, Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510 , Japan

2. National Institute of Technology, Fukushima College , Nagao 30, Taira-Kamiarakawa, Iwaki, Fukushima 970–8034 , Japan

Abstract

Abstract We discuss gravitational waves (GWs) in an electroweakly interacting vector dark matter (DM) model. In the model, the electroweak gauge symmetry is extended to SU(2)$_0 \times$SU(2)$_1 \times$SU(2)$_2 \times$U(1)$_Y$ and spontaneously broken into SU(2)$_L \times$U(1)$_Y$ at TeV scale. The model has an exchange symmetry between SU(2)$_0$ and SU(2)$_2$. This symmetry stabilizes some massive vector bosons associated with the spontaneous symmetry breaking described above, and an electrically neutral one is a DM candidate. In a previous study, it was found that the gauge couplings of SU(2)$_0$ and SU(2)$_1$ are relatively large to explain the measured value of the DM energy density via the freeze-out mechanism. With the large gauge couplings, the gauge bosons potentially have a sizable effect on the scalar potential. In this paper, we focus on the phase transition of SU(2)$_0 \times$SU(2)$_1 \times$SU(2)$_2 \rightarrow$ SU(2)$_L$. We calculate the effective potential at finite temperature and find that the phase transition is first-order and strong in a wide range of the parameter space. The strong first-order phase transition generates GWs. We calculate the GW spectrum and find that it will be possible to detect the GWs predicted in the model by future space-based GW interferometers. We explore the regions of the parameter space probed by the GW detection. We find that the GW detection can probe the region where the mass of $h^{\prime }$, a CP-even scalar in the model, is a few TeV.

Funder

SCOAP

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational wave signatures of a chiral fermion dark matter model;Journal of Cosmology and Astroparticle Physics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3