Bose–Einstein condensation of dilute alpha clusters above the four-α threshold in 16O in the field theoretical superfluid cluster model

Author:

Takahashi J,Yamanaka Y1,Ohkubo S2

Affiliation:

1. Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555, Japan

2. Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

Abstract

Abstract Observed well-developed $\alpha$ cluster states in $^{16}$O located above the four-$\alpha$ threshold are investigated from the viewpoint of Bose–Einstein condensation of $\alpha$ clusters by using a field-theoretical superfluid cluster model in which the order parameter is defined. The experimental energy levels are reproduced well for the first time by calculation. In particular, the observed 16.7 MeV $0_7^+$ and 18.8 MeV $0_8^+$ states with low-excitation energies from the threshold are found to be understood as a manifestation of the states of the Nambu–Goldstone zero-mode operators, associated with the spontaneous symmetry-breaking of the global phase, which is caused by the Bose–Einstein condensation of the vacuum 15.1 MeV $0^+_6$ state with a dilute well-developed $\alpha$ cluster structure just above the threshold. This gives evidence of the existence of the Bose–Einstein condensate of $\alpha$ clusters in $^{16}$O. It is found that the emergence of the energy level structure with a well-developed $\alpha$ cluster structure above the threshold is robust, almost independently of the condensation rate of $\alpha$ clusters under significant condensation rate. The finding of the mechanism that causes the level structure that is similar to $^{12}$C to emerge above the four-$\alpha$ threshold in $^{16}$O reinforces the concept of Bose–Einstein condensation of $\alpha$ clusters in addition to $^{12}$C.

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supersolidity of α cluster structure in Ca40;Physical Review C;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3