T-Minkowski Noncommutative Spacetimes I: Poincaré Groups, Differential Calculi, and Braiding

Author:

Mercati Flavio1

Affiliation:

1. Departamento de Física, niversidad de Burgos. Facultad de Ciencias , Pl. Misael Bañuelos, s/n. 09001 , Spain

Abstract

Abstract This paper introduces and investigates a class of noncommutative spacetimes that I will call “T-Minkowski,” whose quantum Poincaré group of isometries exhibits unique and physically motivated characteristics. Notably, the coordinates on the Lorentz subgroup remain commutative, while the deformation is confined to the translations (hence the T in the name), which act like an integrable set of vector fields on the Lorentz group. This is similar to Majid’s bicrossproduct construction, although my approach allows the description of spacetimes with commutators that include a constant matrix as well as terms that are linear in the coordinates (the resulting structure is that of a centrally extended Lie algebra). Moreover, I require that one can define a covariant braided tensor product representation of the quantum Poincaré group, describing the algebra of N-points. This also implies that a 4D bicovariant differential calculus exists on the noncommutative spacetime. The resulting models can all be described in terms of a numerical triangular R-matrix through RTT relations (as well as RXX, RXY, and RXdX relations for the homogeneous spacetime, the braiding, and the differential calculus). The R-matrices I find are in one-to-one correspondence with the triangular r-matrices on the Poincaré group without quadratic terms in the Lorentz generators. These have been classified, up to automorphisms, by Zakrzewski, and amount to 16 inequivalent models. This paper is the first of a series, focusing on the identification of all the quantum Poincaré groups that are allowed by my assumptions, as well as the associated quantum homogeneous spacetimes, differential calculi, and braiding constructions.

Funder

SCOAP

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3