Rheology of a dilute binary mixture of inertial suspension under simple shear flow

Author:

Takada Satoshi1ORCID,Hayakawa Hisao2ORCID,Garzó Vicente3ORCID

Affiliation:

1. Institute of Engineering and Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho, Koganei, Tokyo 184–8588 , Japan

2. Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho , Sakyo-ku, Kyoto 606–8502 , Japan

3. Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura , E-06006 Badajoz , Spain

Abstract

Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out.

Funder

MEXT

Spanish Government

Junta de Extremadura

ERDF

Yukawa Institute for Theoretical Physics, Kyoto University

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3