Enteropeptidase inhibitor SCO-792 effectively prevents kidney function decline and fibrosis in a rat model of chronic kidney disease

Author:

Katayama Yuko1,Sugama Jun1,Suzuki Tomohisa1,Ishimura Yoshimasa1,Kobayashi Akihiro1,Moritoh Yusuke1ORCID,Watanabe Masanori1

Affiliation:

1. Research Division, SCOHIA PHARMA, Inc., Kanagawa, Japan

Abstract

Abstract Background Inhibiting enteropeptidase, a gut serine protease regulating protein digestion, suppresses food intake and ameliorates obesity and diabetes in mice. However, the effects of enteropeptidase inhibition on kidney parameters are largely unknown. Here, we evaluated the chronic effects of an enteropeptidase inhibitor, SCO-792, on kidney function, albuminuria and kidney pathology in spontaneously hypercholesterolaemic (SHC) rats, a rat chronic kidney disease (CKD) model. Methods SCO-792, an orally available enteropeptidase inhibitor, was administered [0.03% and 0.06% (w/w) in the diet] to 20-week-old SHC rats showing albuminuria and progressive decline in glomerular filtration rate (GFR) for five weeks. The effects of SCO-792 and the contribution of amino acids to these effects were evaluated. Results SCO-792 increased the faecal protein content, indicating that SCO-792 inhibited enteropeptidase in SHC rats. Chronic treatment with SCO-792 prevented GFR decline and suppressed albuminuria. Moreover, SCO-792 improved glomerulosclerosis and kidney fibrosis. Pair feeding with SCO-792 (0.06%) was less effective in preventing GFR decline, albuminuria and renal histological damage than SCO-792 treatment, indicating the enteropeptidase-inhibition-dependent therapeutic effects of SCO-792. SCO-792 did not affect the renal plasma flow, suggesting that its effect on GFR was mediated by an improvement in filtration fraction. Moreover, SCO-792 increased hydrogen sulphide production capacity, which has a role in tissue protection. Finally, methionine and cysteine supplementation to the diet abrogated SCO-792-induced therapeutic effects on albuminuria. Conclusions SCO-792-mediated inhibition of enteropeptidase potently prevented GFR decline, albuminuria and kidney fibrosis; hence, it may have therapeutic potential against CKD.

Funder

SCOHIA PHARMA, Inc

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3