Dynamic prediction models for graft failure in paediatric kidney transplantation

Author:

Kaboré Rémi1,Ferrer Loïc1,Couchoud Cécile2,Hogan Julien3ORCID,Cochat Pierre4,Dehoux Laurène5,Roussey-Kesler Gwenaelle6,Novo Robert7,Garaix Florentine8,Brochard Karine9,Fila Marc10,Parmentier Cyrielle11,Fournier Marie-Cécile12,Macher Marie-Alice23,Harambat Jérôme11314,Leffondré Karen114

Affiliation:

1. INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR1219, Bordeaux, France

2. Agence de la Biomédecine, REIN Registry, La Plaine-Saint Denis, France

3. Pediatric Nephrology Unit, Robert Debré Hospital, Centre de Référence Maladies Rénales Rares Marhea, APHP, Paris, France

4. Pediatric Nephrology Unit, Femme-Mère-Enfant Hospital, Lyon University Hospital, Centre de Référence Maladies Rénales Rares Nephrogones, Bron, France

5. Pediatric Nephrology Unit, Necker Enfants-Malades Hospital, Centre de Référence Maladies Rénales Rares Marhea, APHP, Paris Descartes University, Paris, France

6. Pediatric Nephrology Unit, Femme-Enfant-Adolescent Hospital, Nantes University Hospital, Nantes, France

7. Pediatric Nephrology Unit, Jeanne de Flandre Hospital, Lille University Hospital, Lille, France

8. Pediatric Nephrology Unit, Timone-Enfants Hospital, Marseille University Hospital, Marseille, France

9. Pediatric Nephrology Unit, Children’s Hospital, Toulouse University Hospital, Centre de Référence Maladies Rénales Rares Sorare, Toulouse, France

10. Pediatric Nephrology Unit, Arnaud de Villeneuve Hospital, Montpellier University Hospital, Centre de Référence Maladies Rénales Rares Sorare, Montpellier, France

11. Pediatric Nephrology Unit, Trousseau Hospital, Centre de Référence Maladies Rénales Rares Marhea, APHP, Paris, France

12. INSERM UMR 1246-SPHERE, Nantes University, Tours University, Nantes, France

13. Pediatric Nephrology Unit, Pellegrin-Enfants Hospital, Bordeaux University Hospital, Centre de Référence Maladies Rénales Rares Sorare, Bordeaux, France

14. INSERM, Clinical Investigation Center-Clinical Epidemiology-CIC-1401, Bordeaux, France

Abstract

Abstract Background Several models have been proposed to predict kidney graft failure in adult recipients but none in younger recipients. Our objective was to propose a dynamic prediction model for graft failure in young kidney transplant recipients. Methods We included 793 kidney transplant recipients waitlisted before the age of 18 years who received a first kidney transplantation before the age of 21 years in France in 2002–13 and survived >90 days with a functioning graft. We used a Cox model including baseline predictors only (sex, age at transplant, primary kidney disease, dialysis duration, donor type and age, human leucocyte antigen matching, cytomegalovirus serostatus, cold ischaemia time and delayed graft function) and two joint models also accounting for post-transplant estimated glomerular filtration rate (eGFR) trajectory. Predictive performances were evaluated using a cross-validated area under the curve (AUC) and R2 curves. Results When predicting the risk of graft failure from any time within the first 7 years after paediatric kidney transplantation, the predictions for the following 3 or 5 years were accurate and much better with the joint models than with the Cox model (AUC ranged from 0.83 to 0.91 for the joint models versus 0.56 to 0.64 for the Cox model). Conclusion Accounting for post-transplant eGFR trajectory strongly increased the accuracy of graft failure prediction in young kidney transplant recipients.

Funder

French Ministry of Higher Education Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Reference42 articles.

1. A novel prognostic index for mortality in renal transplant recipients after hospitalization;Hernández;Transplantation,2005

2. Aortic stiffness in a mortality risk calculator for kidney transplant recipients;Dahle;Transplantation,2015

3. Predicting kidney transplant survival using tree-based modeling;Krikov;ASAIO J,2007

4. Survival prognosis after the start of a renal replacement therapy in the Netherlands: a retrospective cohort study;Hemke;BMC Nephrol,2013

5. Mortality prediction after kidney transplantation: comparative clinical use of 7 comorbidity indices;Moore;Exp Clin Transplant,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3