Development of an algorithm to discriminate between plasmid- and chromosomal-mediated AmpC β-lactamase production in Escherichia coli by elaborate phenotypic and genotypic characterization

Author:

Coolen Jordy P M1,den Drijver Evert P M23,Kluytmans Jan A J W245,Verweij Jaco J3,Lamberts Bram A1,Soer Joke A C J1,Verhulst Carlo24,Wertheim Heiman F L1,Kolwijck Eva1

Affiliation:

1. Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands

2. Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands

3. Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands

4. Laboratory for Microbiology, Microvida, Location Breda, The Netherlands

5. Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands

Abstract

Abstract Objectives AmpC-β-lactamase production is an under-recognized antibiotic resistance mechanism that renders Gram-negative bacteria resistant to common β-lactam antibiotics, similar to the well-known ESBLs. For infection control purposes, it is important to be able to discriminate between plasmid-mediated AmpC (pAmpC) production and chromosomal-mediated AmpC (cAmpC) hyperproduction in Gram-negative bacteria as pAmpC requires isolation precautions to minimize the risk of horizontal gene transmission. Detecting pAmpC in Escherichia coli is challenging, as both pAmpC production and cAmpC hyperproduction may lead to third-generation cephalosporin resistance. Methods We tested a collection of E. coli strains suspected to produce AmpC. Elaborate susceptibility testing for third-generation cephalosporins, WGS and machine learning were used to develop an algorithm to determine ampC genotypes in E. coli. WGS was applied to detect pampC genes, cAmpC hyperproducers and STs. Results In total, 172 E. coli strains (n=75 ST) were divided into a training set and two validation sets. Ninety strains were pampC positive, the predominant gene being blaCMY-2 (86.7%), followed by blaDHA-1 (7.8%), and 59 strains were cAmpC hyperproducers. The algorithm used a cefotaxime MIC value above 6 mg/L to identify pampC-positive E. coli and an MIC value of 0.5 mg/L to discriminate between cAmpC-hyperproducing and non-cAmpC-hyperproducing E. coli strains. Accuracy was 0.88 (95% CI=0.79–0.94) on the training set, 0.79 (95% CI=0.64–0.89) on validation set 1 and 0.85 (95% CI=0.71–0.94) on validation set 2. Conclusions This approach resulted in a pragmatic algorithm for differentiating ampC genotypes in E. coli based on phenotypic susceptibility testing.

Funder

INTERREG

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3