Dark stress for improved lipid quantity and quality in bioprospected acid-tolerant green microalgae

Author:

Desjardins Sabrina M1,Laamanen Corey A1,Basiliko Nathan2,Senhorinho Gerusa N A1,Scott John A1ORCID

Affiliation:

1. School of Engineering, Laurentian University , 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6 , Canada

2. Department of Biology, Laurentian University , 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6 , Canada

Abstract

Abstract The cost of microalgae cultivation is one of the largest limitations to achieving sustainable, large-scale microalgae production of commercially desirable lipids. Utilizing CO2 as a ‘free’ carbon source from waste industrial flue gas emissions can offer wide-ranging cost savings. However, these gas streams typically create acidic environments, in which most microalgae cannot survive due to the concentration of CO2 and the presence of other acidic gasses such as NO2 and SO2. To address this situation, we investigated growth of a mixed acid-tolerant green microalgal culture (91% dominated by a single Coccomyxa sp. taxon) bioprospected at pH 2.8 from an acid mine drainage impacted water body. The culture was grown at pH 2.5 and fed with a simulated flue gas containing 6% CO2 and 94% N2. On reaching the end of the exponential growth phase, the culture was exposed to either continued light-dark cycle conditions or continual dark conditions. After three days in the dark, the biomass consisted of 28% of lipids, which was 42% higher than at the end of the exponential phase and 55% higher than the maximum lipid content achieved under light/dark conditions. The stress caused by being continually in the dark also favoured the production of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs; 19.47% and 21.04%, respectively, after 7 days) compared to 7-days of light-dark treatment (1.94% and 9.53%, respectively) and showed an increase in nitrogen content (C:N ratio of 6.4) compared to light-dark treatment (C:N ratio of 11.9). The results of the research indicate that use of acid tolerant microalgae overcomes issues using flue gasses that will create an acidic environment and that applying dark stress is a low-cost stressor stimulates production of desirable dietary lipids.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3