Glucose protects the cell membrane, Na+/K+-ATPase, nucleic acids, and proteins in Bacillus subtilis spores under high pressure thermal sterilization

Author:

Bi Ke1ORCID,Zhang Zhong1,Shang Binling1,Xin Weishan1,Zhang Bianfei1,Yang Jie1,Liu Yue1

Affiliation:

1. Department of Food Science, College of Food and Wine, Ningxia University , Xixia District, Yinchuan, 750021 Ningxia, P. R. China

Abstract

ABSTRACT The extreme resistance of bacterial spores to sterilization makes them a major concern to the food industry and consumers. In this study, the effect of glucose on the inactivation of Bacillus subtilis spores by high pressure thermal sterilization (HPTS) was evaluated. The results showed that the protective effects of glucose increased with the increase in its concentration. Compared with the HPTS control (no addition of glucose), the activity of Na+/K+-ATPase was increased, the leakage of proteins and the release of 2,6-pyridine dicarboxylic acid (DPA) was decreased, and the vibrational strength of the functional group P = O was reduced by the addition of glucose. At the same time, glucose treatment increased the content of α-helix by 6%–22%, while decreased the random coil content by 5%–13% of the cellular protein. In conclusion, the addition of glucose protected the cell membrane, Na+/K+-ATPase, cellular nucleic acids and proteins of B. subtilis under HPTS treatment.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3