Investigating chirality in quorum sensing by analysis ofBurkholderia cepaciaandVibrio fischeriwith comprehensive chiral LC–MS/MS and GC–MS/MS methods

Author:

Portillo Abiud E1,Dhaubhadel Umang1,Horacek Ondrej12,Sung Y-S1,Armstrong Daniel W1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, TX 76019 , United States

2. Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University , Hradec Kralove , Czech Republic

Abstract

AbstractN-acyl homoserine lactones (N-HLs) are signaling molecules used by Gram-negative bacteria in a phenomenon called quorum sensing. Bacteria will detect N-HLs as a way of monitoring their population which, upon reaching a critical level, will express a specific phenotype. An example is the expression of bioluminescence by Vibrio fischeri. Most studies have not considered the chirality of these molecules nor have they used highly sensitive detection methods. Here, the production of d,l-N-HLs are monitored for V. fischeri, Burkholderia cepacia, Pseudomonas fluorescens, and P. putida, using highly sensitive tandem mass spectrometry analysis. Novel N-HLs are reported for both V. fischeri and B. cepacia, including a plethora of previously unknown d-N-HLs, including the first d-N-HLs containing oxo and hydroxy functionalities. Anomalously, N-HLs were not detected in any cultures of P. fluorescens and P. putida, which are species that previously were reported to produce N-HLs. However, it is apparent that differences in the reported occurrence and levels of N-HLs can result from (a) different strains of bacteria, (b) different growth media and environmental conditions, and (c) sometimes false-positive results from detection methodologies. Time studies of V. fischeri suggest the possibility that separate synthetic and elimination pathways exist between d- and l-N-HLs. Possible biological processes that could be the source of d-N-HL production are considered.

Funder

Welch Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3