Affiliation:
1. Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
Abstract
ABSTRACT
The transcriptional activator Positive Regulatory Factor A (PrfA) regulates expression of genes essential for virulence in Listeria monocytogenes. To define the PrfA regulon, the 10403S wildtype (WT) strain, a constitutively active prfA* mutant, and an isogenic ∆prfA mutant were grown under PrfA-inducing conditions in a medium containing glucose-1-phosphate and pre-treated with 0.2% activated charcoal. RNA-seq-generated transcript levels were compared as follows: (i) prfA* and WT; (ii) WT and ∆prfA and (iii) prfA* and ∆prfA. Significantly higher transcript levels in the induced WT or constitutively active PrfA* were identified for 18 genes and 2 ncRNAs in at least one of the three comparisons. These genes included: (i) 10/12 of the genes previously identified as directly PrfA-regulated; (ii) 2 genes previously identified as PrfA-regulated, albeit likely indirectly; and (iii) 6 genes newly identified as PrfA-regulated, including one (LMRG_0 2046) with a σA-dependent promoter and PrfA box located within an upstream open reading frame. LMRG_0 2046, which encodes a putative cyanate permease, is reported to be downregulated by a σB-dependent anti-sense RNA. This newly identified overlap between the σB and PrfA regulons highlights the complexity of regulatory networks important for fine-tuning bacterial gene expression in response to the rapidly changing environmental conditions associated with infection.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献