Diversity and characterization of antagonistic bacteria against Pseudomonas syringae pv. actinidiae isolated from kiwifruit rhizosphere

Author:

Yan Zhewei1,Fu Min1ORCID,Mir Sajad Hussain1,Zhang Lixin1ORCID

Affiliation:

1. Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University , Hefei 230036, Anhui Province , P.R. China

Abstract

Abstract Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is a severe global disease. However, effective biological control agents for controlling Psa are currently unavailable. This study aimed to screen potential biological control agents against Psa from the kiwifruit rhizosphere. In this study, a total of 722 isolates of bacteria were isolated from the rhizosphere of kiwifruit orchards in five regions of China. A total of 82 strains of rhizosphere bacteria showed antagonistic effects against Psa on plates. Based on amplified ribosomal DNA restriction analysis (ARDRA), these antagonistic rhizosphere bacteria were grouped into 17 clusters. BLAST analyses based on 16S rRNA gene sequence revealed 95.44%–100% sequence identity to recognized species. The isolated strains belonged to genus Acinetobacter, Bacillus, Chryseobacterium, Flavobacterium, Glutamicibacter, Lysinibacillus, Lysobacter, Pseudomonas, Pseudarthrobacter, and Streptomyces, respectively. A total of four representative strains were selected to determine their extracellular metabolites and cell-free supernatant activity against Psa in vitro. They all produce protease and none of them produce glucanase. One strain of Pseudomonas sp. produces siderophore. Strains of Bacillus spp. and Flavobacteria sp. produce cellulase, and Flavobacteria sp. also produce chitinase. Our results suggested that the kiwifruit rhizosphere soils contain a variety of antagonistic bacteria that effectively inhibit the growth of Psa.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Anhui Agricultural University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3