Affiliation:
1. Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens, Greece
2. Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15784 Athens, Greece
Abstract
ABSTRACT
The issue of food contamination by fungi and aflatoxins; constitutes a serious concern not only for human/animal health but also for agriculture and the economy. Aflatoxins are secondary metabolites produced by certain filamentous fungi and contaminate a variety of foodstuffs. In this context, control of fungal growth and aflatoxin contamination appears to be important. The present study aimed to investigate new Cu(I) and Cu(II)–quinoxaline complexes, namely [Cu(2,2´-pq)(NO3)](NO3) (1), [Cu(2,2´-pq)2(NO3)](NO3)·6H2O (2) and [Cu(2,2΄-pq)2](BF4) (3), where 2,2´-pq is 2-(2’-pyridyl quinoxaline), as antifungal agents against Aspergillus parasiticus. All complexes, the ligand and the starting material Cu(NO3)2–3H2O, regardless of the concentration used, caused inhibition of A. parasiticus growth ranged from 8.52 to 33.33%. The fungal growth inhibition was triggered when irradiation in visible (λ > 400 nm) was continuously applied (range 18.36–57.20%). The highest inhibitory activity was exhibited by the complex [Cu(2,2´-pq)2(NO3)](NO3)·6H2O and for this reason, it was selected to be studied for its ability to suppress aflatoxin B1 produced by A. parasiticus. AFB1 production after the irradiation process was found to be suppressed by 25% compared to AFB1 produced in dark conditions.
Funder
National and Kapodistrian University of Athens
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology