Theoretical hypothesis in a direct electron transfer between non-interacting Fe-S proteins within an artificial fusion

Author:

Lim Jae Kyu12ORCID

Affiliation:

1. Korea Institute of Ocean Science and Technology (KIOST), Jeju Bio Research Center , Jeju 63349 , Republic of Korea

2. University of Science and Technology (UST), KIOST School , Daejeon 34113 , Republic of Korea

Abstract

Abstract Reduction of CO2 to formate utilizing formate dehydrogenases (FDHs) has been attempted biologically and electrochemically. However, the conversion efficiency is very low due to the low energy potential of electron donors and/or electron competition with other electron acceptors. To overcome such a low conversion efficiency, I focused on a direct electron transfer between two unrelated redox enzymes for the efficient reduction of CO2 and utilized the quantum mechanical magnetic properties of the [Fe-S] ([iron-sulfur]) cluster to develop a novel electron path. Using this electron path, we connected non-interacting carbon monoxide dehydrogenase and FDH, constructing a synthetic carbon monoxide:formate oxidoreductase as a single functional enzyme complex in the previous study. Here, a theoretical hypothesis that can explain the direct electron transfer phenomenon based on the magnetic properties of the [Fe-S] cluster is proposed.

Funder

Korea Institute of Ocean Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3