Genome-wide identification, characterization and expression analysis of lineage-specific genes within Hanseniaspora yeasts

Author:

Chen Kai1,Tian Zhonghuan2,Chen Ping3,He Hua4,Jiang Fatang1,Long Chao-an2ORCID

Affiliation:

1. School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China

3. Department of Pediatric Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China

4. School of Landscape Architecture and Horticulture, Wuhan Institute of Bioengineering, Wuhan 430415, China

Abstract

ABSTRACT Lineage-specific genes (LSGs) are defined as genes with sequences that are not significantly similar to those in any other lineage. LSGs have been proposed, and sometimes shown, to have significant effects in the evolution of biological function. In this study, two sets of Hanseniaspora spp. LSGs were identified by comparing the sequences of the Kloeckera apiculata genome and of 80 other yeast genomes. This study identified 344 Hanseniaspora-specific genes (HSGs) and 109 genes (‘orphan genes’) specific to K. apiculata. Three thousand three hundred thirty-one K. apiculata genes that showed significant similarity to at least one sequence outside the Hanseniaspora were classified into evolutionarily conserved genes. We analyzed their sequence features, functional categories, gene origin, gene structure and gene expression. We also investigated the predicted cellular roles and Gene Ontology categories of the LSGs using functional inference. The patterns of the functions of LSGs do not deviate significantly from genome-wide average. The results showed that a few LSGs were formed by gene duplication, followed by rapid sequence divergence. Many of the HSGs and orphan genes exhibited altered expression in response to abiotic stress. Studying these LSGs might be helpful for understanding the molecular mechanism of yeast adaption.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Agriculture Research System of China

Hubei University of Technology

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3