Affiliation:
1. Department of Biology, New Mexico State University , Las Cruces, NM 88003 , United States
2. Department of Natural Resources and the Environment, University of New Hampshire , Durham, NH 03824 , Unites States
3. Department of Ecology and Evolutionary Biology, University of California , Irvine, CA 92697 , United States
Abstract
Abstract
Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming—and associated drying—in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change.
Funder
University of California Institute for Mexico and the United States
University of New Hampshire
New Mexico State University
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology