Klebsiella pneumoniae pathogenicity in silk moth larvae infection model

Author:

Tuba Tasnia1,Chowdhury Farhan R1,Hossain Tasnia1,Farzana Maisha1,Ahad Inteshar Ibn1,Hossain M Mahtab1,Hossain M Ismail1,Saleh Nusrat U A1,Nawaar Nafisa1,Uddin M Aftab2,Bari M Latiful3,Hossain Muktadir S1ORCID

Affiliation:

1. Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh

2. Bangladesh Sericulture Research and Training Institute, Rajshahi, Bangladesh

3. Center for Advanced Research in Sciences, University of Dhaka, Dhaka, Bangladesh

Abstract

Abstract The emergence of antibiotic resistant bacteria is a major health concern worldwide in recent years. The objective of this study is to establish the larvae of the silk moth (commonly known as silkworm), Bombyx mori as an infection model to study antibacterial effect of antibiotics against Klebsiella pneumoniae. In this study, the pathogenicity of a K. pneumoniae strain isolated from food to silkworm larvae was examined. Within 72h of bacterial injection, all silkworm larvae were killed in a dose-dependent manner with their body color turning into black due to increased melanization. Bacterial numbers in the larval hemolymph (blood) significantly increased after 9h of infection with a decrease in viable circulatory hemocytes in hemolymph. When presented with bacteria laden leaves, larvae did not eat but injection of bacteria directly into the midgut killed larvae within 12h with a higher load required in comparison to that required for the killing by hemolymph injection. Administration of four different antibiotics into larval hemolymph showed therapeutic effect at different doses with varying efficacies against hemolymph-injected K. pneumoniae. These results indicate that the silkworm larvae can be used as an infection model not only to study the pathogenicity of K. pneumoniae but also to perform rapid screening for the identification of antibiotics effective against multidrug-resistant strains of K. pneumoniae.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3