Characterization of Vibrio parahaemolyticus strains isolated from clinically asymptomatic seafood workers

Author:

Chonsin Kaknokrat1ORCID,Supha Neunghatai2,Nakajima Chie34,Suzuki Yasuhiko34ORCID,Suthienkul Orasa2

Affiliation:

1. Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani 84100, Thailand

2. Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand

3. Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Hokkaido 001–0020, Japan

4. Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060–0808, Japan

Abstract

ABSTRACT Vibrio parahaemolyticus (VP) is a major cause of gastroenteritis outbreaks in Thailand and other countries due to the consumption of contaminated and undercooked seafood. However, there have been few reports of the molecular epidemiology of VP isolates from asymptomatic seafood handlers. Here, we report the phenotypic and genetic characterization of 61 VP isolates obtained from asymptomatic workers in two seafood-processing plants. We found 24 O:K serotypes, of which O11:KUT, O1:KUT and O3:KUT were the dominant serotypes. Analysis by PCR showed that 12 isolates harbored either tdh or trh genes with the potential to be pathogenic VP strains. The presence of T3SS2α and T3SS2β genes was correlated with the presence of tdh and trh, respectively. Four tdh+ isolates were positive for pandemic marker. In this study, VP isolates were commonly resistant to ampicillin, cephazolin, fosfomycin and novobiocin. Phylogenetic analysis of VP1680 loci in 35 isolates from 17 asymptomatic workers, 6 gastroenteritis patients, 7 environmental samples and 5 genomes from a database showed 22 different alleles. Gene VP1680 was conserved in tdh+ isolates and pandemic strains, while that of trh + isolates was diverse. Asymptomatic workers carrying VP were the most likely source of contamination, which raises concerns over food safety in seafood-processing plants.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3