A method for the enrichment, isolation and validation of Mycobacterium smegmatis population surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin

Author:

Pradhan Atul1,Swaminath Sharmada1,Jakkala Kishor1,Ajitkumar Parthasarathi1ORCID

Affiliation:

1. Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, Karnataka, India

Abstract

ABSTRACT The bacterial populations surviving in the presence of antibiotics contain cells that have gained genetic resistance, phenotypic resistance and tolerance to antibiotics. Isolation of live bacterial population, surviving against antibiotics, from the milieu of high proportions of dead/damaged cells will facilitate the study of the cellular/molecular processes used by them for survival. Here we present a Percoll gradient centrifugation based method for the isolation of enriched population of Mycobacterium smegmatis surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin. From the time of harvest, throughout the enrichment and isolation processes, and up to the lysis of the cells for total RNA preparation, we maintained the cells in the presence of the antibiotic to avoid changes in their metabolic status. The total RNA extracted from the enriched population of live antibiotic-surviving population showed structural integrity and purity. We analysed the transcriptome profile of the antibiotic-surviving population and compared it with the orthologue genes of Mycobacterium tuberculosis that conferred antibiotic tolerance on tubercle bacilli isolated from the tuberculosis patients under treatment with four antitubercular antibiotics. Statistically significant comparability between the gene expression profiles of the antibiotic tolerance associated genes of M. smegmatis and M. tuberculosis validated the reliability/utility of the method.

Funder

DBT

IISc

Indian Council of Medical Research

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3