Pseudomonas aeruginosa is oxygen-deprived during infection in cystic fibrosis lungs, reducing the effectiveness of antibiotics

Author:

Martin Lois W1,Gray Andrew R2,Brockway Ben3,Lamont Iain L1ORCID

Affiliation:

1. Department of Biochemistry, University of Otago , Dunedin, 9016 , New Zealand

2. Biostatistics Centre, University of Otago , Dunedin 9016 , New Zealand

3. Medicine, University of Otago , Dunedin 9016 , New Zealand

Abstract

Abstract Pseudomonas aeruginosa infects the lungs of patients with cystic fibrosis. Sputum expectorated from the lungs of patients contains low levels of oxygen, indicating that P. aeruginosa may be oxygen-deprived during infection. During in vitro growth under oxygen-limiting conditions, a P. aeruginosa reference strain increases expression of a cytochrome oxidase with a high affinity for oxygen, and of nitrate and nitrite reductases that enable it to use nitrate instead of oxygen during respiration. Here, we quantified transcription of the genes encoding these three enzymes in sputum samples from 18 infected patients, and in bacteria isolated from the sputum samples and grown in aerobic and anaerobic culture. In culture, expression of all three genes was increased by averages of 20- to 500-fold in anaerobically grown bacteria compared with those grown aerobically, although expression levels varied greatly between isolates. Expression of the same genes in sputum was similar to that of the corresponding bacteria in anaerobic culture. The isolated bacteria were less susceptible to tobramycin and ciprofloxacin, two widely used anti-pseudomonal antibiotics, when grown anaerobically than when grown aerobically. Our findings show that P. aeruginosa experiences oxygen starvation during infection in cystic fibrosis, reducing the effectiveness of antibiotic treatment.

Funder

Cystic Fibrosis New Zealand

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3