Affiliation:
1. Graduate School of Pharmaceutical Sciences, Kitasato University , Tokyo 108-8641, Japan
Abstract
Abstract
Noncanonical D-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria. Previously, we identified amino acid racemases with broad substrate specificity, including YgeA from Escherichia coli, which strongly prefers homoserine as a substrate. In this study, we investigated the functions of this enzyme in vivo. When wild-type and ygeA-deficient E. coli strains were cultured in minimal medium containing D-homoserine, the D-homoserine level was significantly higher in the ygeA-deficient strain than in the wild-type strain, in which it was almost undetectable. Additionally, D-homoserine was detected in YgeA-expressed E. coli cells cultured in minimal medium containing L-homoserine. The growth of the ygeA-deficient strain was significantly impaired in minimal medium with or without supplemental D-homoserine, while L-methionine, L-threonine or L-isoleucine, which are produced via L-homoserine, restored the growth impairment. Furthermore, the wild-type strain formed biofilms significantly more efficiently than the ygeA-deficient strain. Addition of L- or D-homoserine significantly suppressed biofilm formation in the wild-type strain, whereas this addition had no significant effect in the ygeA-deficient strain. Together, these data suggest that YgeA acts as an amino acid racemase and plays a role in L- and D-homoserine metabolism in E. coli.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献