Endoglucanase activity of cellulolytic bacteria from lake sediments and its application in hydrophyte degradation

Author:

Zhang Hongpei12,Li Qianzheng23,Zhao Yuqing12,Zhang Mingzhen23,Xu Dong2,Wu Zhenbin2,Zhou Qiaohong2

Affiliation:

1. College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, No. 122 Luoshi Road, Hongshan District, Wuhan, Hubei Province, P.R. China

2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, No. 7 Donghu South Road, Wuchang District, Wuhan, Hubei Province, P.R. China

3. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China

Abstract

ABSTRACT Hydrophytes are plants that grow in or on water. Their overgrowth adversely affects the ecosystem because of crowding out other aquatic organisms and polluting the environment with plant residue. In principle, cellulolytic bacteria can be used to degrade hydrophyte biomass. We here isolated and characterized four cellulolytic bacterial strains from Lake Donghu sediments (Wuhan, China) that are rich in organic matter and plant residues. The isolates (WDHS-01 to 04) represent Bacillus, Micromonospora and Streptomyces genera. The bacteria exhibited pronounced endoglucanase activities (from 0.022 to 0.064 U mL–1). They did not extensively degrade the emerged plant Canna indica L. However, in an Hydrilla verticillata (submerged plant) degradation medium, strain WDHS-02 exhibited a high degradation rate (54.91%), endoglucanase activity of 0.35 U mL–1 and the conversion rate of cellulose to reducing sugars of 7.15%. Correlation analysis revealed that bacterial endoglucanase activity was significantly correlated with the degradation rate, and acid detergent lignin, ash and cellulose content of the residual H. verticillata powder. In conclusion, the identified bacteria efficiently decomposed submerged plants without the need for acid–base pretreatment. They expand the set of known cellulolytic bacteria and can be used for natural degradation of submerged plants.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3