Bacterial diversity in a continuum from supraglacial habitats to a proglacial lake on the Tibetan Plateau

Author:

Xing Tingting1ORCID,Liu Keshao1,Ji Mukan2,Chen Yuying1,Liu Yongqin12ORCID

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China

2. Center for the Pan-Third Pole Environment, Lanzhou University , Lanzhou 730000 , China

Abstract

Abstract Mountain glaciers are frequently assessed for their hydrological connectivity from glaciers to proglacial lakes. Ecological process on glacier surfaces and downstream ecosystems have often been investigated separately, but few studies have focused on the connectivity between the different glacial habitats. Therefore, it remains a limited understanding of bacterial community assembly across different habitats along the glacier hydrological continuum. In this study, we sampled along a glacial catchment from supraglacial snow, cryoconite holes, supraglacial runoff, ice-marginal moraine and proglacial lake on the Tibetan Plateau. The bacterial communities in these habitats were analyzed using high-throughput DNA sequencing of the 16S rRNA gene to determine the bacterial composition and assembly. Our results showed that each habitat hosted unique bacterial communities, with higher bacterial α-diversity in transitional habitats (e.g. runoff and ice-marginal moraine). Null model analysis indicated that deterministic processes predominantly shaped bacterial assembly in snow, cryoconite holes and lake, while stochastic process dominantly governed bacterial community in transitional habitats. Collectively, our findings suggest that local environment play a critical role in filtering bacterial community composition within glacier habitats. This study enhances our understanding of microbial assembly process in glacier environments and provides valuable insights into the factors governing bacterial community compositions across different habitats along the glacial hydrological continuum.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3