Characterization of the genetic environment of blaKPC in Escherichia coli isolates from hospitals in China

Author:

Yang Xuejing1,Qi Yan2,Li Guoping3,Wang Yuying2,Lou Zhengqing2,Jiang Yan4

Affiliation:

1. Department of Clinical Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

2. Department of Clinical Laboratory, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China

3. Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China

4. Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China

Abstract

ABSTRACT Carbapenem resistance in Enterobacteriaceae members has become a major challenge, and the genetic environment of blaKPC, encoding Klebsiella pneumoniae carbapenemases, has not been fully clarified in China. In this study, we aimed to explore the genetic environment of blaKPC in 25 carbapenem-resistant E. coli isolates from hospitals in Hangzhou Province, China. Antimicrobial susceptibility against 22 common antimicrobial agents was tested. Polymerase chain reaction (PCR) analysis was performed for screening of the resistent genes, such as blaKPC, blaCTX-M, blaTEM, blaSHV, blaNDM, qnrA, qnrB, qnrS, aac(6’)-Ib, armA and rmtB. The genetic environment of blaKPC were determinedin one isolate. blaKPC was detected by PCR in all the clinical E. coli isolates. There were no strains carrying blaNDM, qnrA and armA. The genetic environment of blaKPC showed that blaKPC dissemination is plasmid mediated and that it is located in the Tn3–Tn4401 transposon complex. Encoding of blaKPC-2 was responsible for carbapenem resistance in the 25 E. coli isolates. The genetic environment of blaKPC was characterized by the Tn3–Tn4401 complex. Our findings may provide a theoretical basis for clinical drug-resistance monitoring, anti-infection treatment and hospital infection control.

Funder

National Natural Science Foundation of People's Republic China

Zhejiang Provincial Medical and Health Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3