Examination of phase-variable haemoglobin–haptoglobin binding proteins in non-typeable Haemophilus influenzae reveals a diverse distribution of multiple variants

Author:

Phillips Zachary N1,Jennison Amy V2,Whitby Paul W3,Stull Terrence L3,Staples Megan2,Atack John M14ORCID

Affiliation:

1. Institute for Glycomics, Griffith University , Gold Coast, Queensland, Australia

2. Queensland Department of Health, Public Health Microbiology, Forensic and Scientific Services , Brisbane, Queensland, Australia

3. BacVax, Inc. , Phoenix, AZ, United States

4. School of Environment and Science, Griffith University , Gold Coast, Queensland, Australia

Abstract

Abstract Non-typeable Haemophilus influenzae (NTHi) is a major human pathogen for which there is no globally licensed vaccine. NTHi has a strict growth requirement for iron and encodes several systems to scavenge elemental iron and heme from the host. An effective NTHi vaccine would target conserved, essential surface factors, such as those involved in iron acquisition. Haemoglobin–haptoglobin binding proteins (Hgps) are iron-uptake proteins localized on the outer-membrane of NTHi. If the Hgps are to be included as components of a rationally designed subunit vaccine against NTHi, it is important to understand their prevalence and diversity. Following analysis of all available Hgp sequences, we propose a standardized grouping method for Hgps, and demonstrate increased diversity of these proteins than previously determined. This analysis demonstrated that genes encoding variants HgpB and HgpC are present in all strains examined, and almost 40% of strains had a duplicate, nonidentical hgpB gene. Hgps are also phase-variably expressed; the encoding genes contain a CCAA(n) simple DNA sequence repeat tract, resulting in biphasic ON–OFF switching of expression. Examination of the ON–OFF state of hgpB and hgpC genes in a collection of invasive NTHi isolates demonstrated that 58% of isolates had at least one of hgpB or hgpC expressed (ON). Varying expression of a diverse repertoire of hgp genes would provide strains a method of evading an immune response while maintaining the ability to acquire iron via heme. Structural analysis of Hgps also revealed high sequence variability at the sites predicted to be surface exposed, demonstrating a further mechanism to evade the immune system—through varying the surface, immune-exposed regions of the membrane anchored protein. This information will direct and inform the choice of candidates to include in a vaccine against NTHi.

Funder

Australian Research Council

Griffith University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3