Limitations of transcriptome-based prediction of pathogenicity genes in the plant pathogen Leptosphaeria maculans

Author:

Urquhart Andrew S1,Idnurm Alexander1

Affiliation:

1. School of BioSciences, 1929 Botany Building, the University of Melbourne, Parkville, VIC 3010, Australia

Abstract

ABSTRACT Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.

Funder

Australian Grains Research and Development Corporation

Grains Research and Development Corporation

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3