Tropical stream microcosms of isolated fungal species suggest nutrient enrichment does not accelerate decomposition but might inhibit fungal biomass production

Author:

Camelo Flávio Roque Bernardes1,Tonin Alan M1,Salgueiro Laís1,Sena Guilherme1,Braga Isabela1,Medeiros Adriana Oliveira2,Gonçalves Júnior José Francisco1

Affiliation:

1. Department of Ecology, Institute of Biological Sciences, University of Brasília (UnB) 70910-900, Brasília, Brazil

2. Laboratório de Microbiologia Ambiental Instituto de Biologia, Universidade Federal da Bahia 40170-115, Campus Ondina, Salvador, Brazil

Abstract

Abstract Terrestrial leaf litter is an essential energy source in forest streams and in many tropical streams, including Cerrado, litter undergoes biological decomposition mainly by fungi. However, there is a limited understanding of the contribution of isolated fungal species to in-stream litter decomposition in the tropics. Here we set a full factorial microcosms experiment using four fungal species (Aquanectria penicillioides, Lunulospora curvula, Pestalotiopsis submerses, and Pestalotiopsis sp.) incubated in isolation, two litter types (rapid and slow decomposing litter) and two nutrient levels (natural and enriched), all characteristics of Cerrado streams, to elucidate the role of isolated fungal species on litter decomposition. We found that all fungal species promoted litter mass loss but with contributions that varied from 1% to 8% of the initial mass. The fungal species decomposed 1.5 times more the slow decomposing litter and water nutrient enrichment had no effect on their contribution to mass loss. In contrast, fungal biomass was reduced by nutrient enrichment and was different among fungal species. We showed fungal contribution to decomposition depends on fungal identity and litter type, but not on water nutrients. These findings suggest that the identity of fungal species and litter types may have more important repercussions to in-stream decomposition than moderate nutrient enrichment in the tropics.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3