Biodegradation of propanil by Acinetobacter baumannii DT in a biofilm-batch reactor and effects of butachlor on the degradation process

Author:

Oanh Nguyen Thi1,Duc Ha Danh1,Ngoc Dau Thi Hong2,Thuy Nguyen Thi Dieu2,Hiep Nguyen Huu3,Van Hung Nguyen1

Affiliation:

1. Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam

2. Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City, 100000, Vietnam

3. Institute of Biotechnology, Vietnam Academy of Science and Technology Campus II, 3/2 Street, Xuan Khanh, Nink Kieu, Can Tho City, 90000, Vietnam

Abstract

ABSTRACT The herbicide, propanil, has been extensively applied in weed control, which causes serious environmental pollution. Acinetobacter baumannii DT isolated from soil has been used to determine the degradation rates of propanil and 3,4-dichloroaniline by freely suspended and biofilm cells. The results showed that the bacterial isolate could utilize both compounds as sole carbon and nitrogen sources. Edwards's model could be fitted well to the degradation kinetics of propanil, with the maximum degradation of 0.027 ± 0.003 mM h−1. The investigation of the degradation pathway showed that A. baumannii DT transformed propanil to 3,4-dichloroaniline before being completely degraded via the ortho-cleavage pathway. In addition, A. baumannii DT showed high tolerance to butachlor, a herbicide usually mixed with propanil to enhance weed control. The presence of propanil and butachlor in the liquid media increased the cell surface hydrophobicity and biofilm formation. Moreover, the biofilm reactor showed increased degradation rates of propanil and butachlor and high tolerance of bacteria to these chemicals. The obtained results showed that A. baumannii DT has a high potential in the degradation of propanil.

Funder

Ministry of Education and Training, Vietnam

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3