Reduction of pyocyanin synthesis and antibiotic resistance in Pseudomonas aeruginosa by low concentration ethanol

Author:

Jiang Shijie1,Deng Yunfeng1,Long Zhijian1,Liu Peng2,Hong Jing2,Wei Tingzhou1,Zhang Yu1,Sun Shanshan2,Zhuo Shaoyuan2,Shang Liguo2ORCID

Affiliation:

1. School of Life Science and Engineering, Southwest University of Science and Technology , 59 Qinglong Road, Mianyang, Sichuan Province 621010 , China

2. School of Basic Medicine, Guangxi University of Chinese Medicine , 13 Wuhe Dadao, Nanning City, Guangxi Province 530200 , China

Abstract

Abstract Pseudomonas aeruginosa is a common bacteria that may cause a wide range of severe illnesses in humans. One of the nonantibiotic therapies, antivirulence factor therapy, has attracted ongoing interest. Screening for and investigating bacterial virulence factor inhibitors is critical for the development of antivirulence factor treatments. Pyocyanin is P. aeruginosa’s distinctive pigment, and it plays a key role in infection. The impact of low concentration ethanol on pyocyanin production was investigated in this research. Pyocyanin production was found both subjectively and quantitatively. The effects of ethanol on the expression of pyocyanin production genes were studied using qRT-PCR and western blotting. The findings demonstrated that low concentrations of ethanol (as little as 0.1%) greatly suppressed pyocyanin production without affecting P. aeruginosa growth. The degree of inhibition increased as the ethanol contentration rose. Ethanol inhibits the expression of genes involved in pyocyanin production. This inhibitory impact was mostly seen at the protein level. Further research revealed that ethanol increased the expression of the post-transcriptional regulator RsmA, which inhibits pyocyanin production. Given the favorable relationship between pyocyanin production and antibiotic resistance, the impact of low concentration ethanol on various antibiotics was investigated. Ethanol lowered antibiotic resistance in P. aeruginosa, presumably by inhibiting pyocyanin.

Funder

Guangxi Natural Science Foundation

Guangxi University of Chinese Medicine

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3