Light irradiation changes the regulation pattern of BtCrgA on carotenogenesis in Blakeslea trispora

Author:

Yang Jiamin1,Zeng Mingxi1,Wu Hui2,Han Zhenlin3,Du Zhiyan (Rock)3,Yu Xiaobin1,Luo Wei1ORCID

Affiliation:

1. The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122 , China

2. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China

3. Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, HI 96822 , USA

Abstract

Abstract CrgA has been shown to be a negative regulator of carotenogenesis in some filamentous fungi, while light irradiation is an inducible environmental factor for carotenoid biosynthesis. To clarify the relationship between CrgA and light-inducible carotenogenesis in Blakeslea trispora, the cis-acting elements of the btcrgA promoter region were investigated, followed by the analyses of correlation between the expression of btcrgA and carotenoid structural genes under different irradiation conditions. A variety of cis-acting elements associated with light response was observed in the promoter region of btcrgA, and transcription of btcrgA and carotenoid structural genes under different irradiation conditions was induced by white light with a clear correlation. Then, RNA interference and overexpression of btcrgA were performed to investigate their effects on carotenogenesis at different levels under irradiation and darkness. The analyses of transcription and enzyme activities of carotenoid structural gene, and accumulation of carotenoids among btcrgA-interfered, btcrgA-overexpressed, and wild-type strains under irradiation and darkness indicate that btcrgA negatively regulates the synthesis of carotenoid in darkness, while promotes the carotenogenesis under irradiation regardless of reduced or overexpression of btcrgA .

Funder

Key Laboratory of Carbohydrate Chemistry & Biotechnology, the Ministry of Education, China

State Key Laboratory of Bioreactor Engineering

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3