Covariate adjustment in multiarmed, possibly factorial experiments

Author:

Zhao Anqi1,Ding Peng2ORCID

Affiliation:

1. Department of Statistics and Data Science, National University of Singapore , Singapore , Singapore

2. Department of Statistics, University of California , Berkeley, CA , USA

Abstract

AbstractRandomized experiments are the gold standard for causal inference and enable unbiased estimation of treatment effects. Regression adjustment provides a convenient way to incorporate covariate information for additional efficiency. This article provides a unified account of its utility for improving estimation efficiency in multiarmed experiments. We start with the commonly used additive and fully interacted models for regression adjustment in estimating average treatment effects (ATE), and clarify the trade-offs between the resulting ordinary least squares (OLS) estimators in terms of finite sample performance and asymptotic efficiency. We then move on to regression adjustment based on restricted least squares (RLS), and establish for the first time its properties for inferring ATE from the design-based perspective. The resulting inference has multiple guarantees. First, it is asymptotically efficient when the restriction is correctly specified. Second, it remains consistent as long as the restriction on the coefficients of the treatment indicators, if any, is correctly specified and separate from that on the coefficients of the treatment-covariate interactions. Third, it can have better finite sample performance than the unrestricted counterpart even when the restriction is moderately misspecified. It is thus our recommendation when the OLS fit of the fully interacted regression risks large finite sample variability in case of many covariates, many treatments, yet a moderate sample size. In addition, the newly established theory of RLS also provides a unified way of studying OLS-based inference from general regression specifications. As an illustration, we demonstrate its value for studying OLS-based regression adjustment in factorial experiments. Importantly, although we analyse inferential procedures that are motivated by OLS, we do not invoke any assumptions required by the underlying linear models.

Funder

National University of Singapore

U.S. National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3